A Compromise Principle in Deep Monocular Depth Estimation

نویسندگان

  • Huan Fu
  • Mingming Gong
  • Chaohui Wang
  • Dacheng Tao
چکیده

Monocular depth estimation, which plays a key role in understanding 3D scene geometry, is fundamentally an illposed problem. Existing methods based on deep convolutional neural networks (DCNNs) have examined this problem by learning convolutional networks to estimate continuous depth maps from monocular images. However, we find that training a network to predict a high spatial resolution continuous depth map often suffers from poor local solutions. In this paper, we hypothesize that achieving a compromise between spatial and depth resolutions can improve network training. Based on this “compromise principle”, we propose a regression-classification cascaded network (RCCN), which consists of a regression branch predicting a low spatial resolution continuous depth map and a classification branch predicting a high spatial resolution discrete depth map. The two branches form a cascaded structure allowing the classification and regression branches to benefit from each other. By leveraging large-scale raw training datasets and some data augmentation strategies, our network achieves top or stateof-the-art results on the NYU Depth V2[1], KITTI [2], and Make3D [3] benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference

Monocular depth estimation is a challenging task in complex compositions depicting multiple objects of diverse scales. Albeit the recent great progress thanks to the deep convolutional neural networks (CNNs), the state-of-the-art monocular depth estimation methods still fall short to handle such real-world challenging scenarios. In this paper, we propose a deep end-to-end learning framework to ...

متن کامل

Monocular Depth Estimation using Multi-Scale Continuous CRFs as Sequential Deep Networks

Depth cues have been proved very useful in various computer vision and robotic tasks. This paper addresses the problem of monocular depth estimation from a single still image. Inspired by the effectiveness of recent works on multi-scale convolutional neural networks (CNN), we propose a deep model which fuses complementary information derived from multiple CNN side outputs. Different from previo...

متن کامل

On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach

We revisit the problem of visual depth estimation in the context of autonomous vehicles. Despite the progress on monocular depth estimation in recent years, we show that the gap between monocular and stereo depth accuracy remains large—a particularly relevant result due to the prevalent reliance upon monocular cameras by vehicles that are expected to be self-driving. We argue that the challenge...

متن کامل

J-MOD$^{2}$: Joint Monocular Obstacle Detection and Depth Estimation

In this work, we give a new twist to monocular obstacle detection. Most of the existing approaches either rely on Visual SLAM systems or on depth estimation models to build 3D maps and detect obstacles. Despite their success, these methods are not specifically devised for monocular obstacle detection. In particular, they are not robust to appearance and camera intrinsics changes or texture-less...

متن کامل

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.08267  شماره 

صفحات  -

تاریخ انتشار 2017